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 'FRONT   END'   DESIGN 
  

 W B Hall, FREng., F.I.Mech.E 
 

Introduction
 
The term 'Front end' applied to a steam locomotive refers to the blast pipe, petticoat and chimney, 
contained in the smokebox. Its design is crucial if a balance is to be maintained between steam 
usage in the cylinders and steam production in the boiler: as the steam flows faster through the 
blastpipe, so the vacuum in the smokebox increases, causing a greater air flow through the fire 
and a higher steaming rate. The problem has a long history: it is said that George Stephenson, in 
an attempt to quieten the exhaust of one of his engines, turned it into the chimney and thereby 
greatly improved the steaming capacity of the boiler! 
 
One of the earliest investigations into front end performance was that by Zeuner in 1863 [1]  
using a small scale model (nozzle diameter ≈ 10 mm). This and other work carried out in the 
period up to the 1920s is reviewed in reference [3]. Prominent amongst this work is the study by 
Goss of Purdue University [2] , starting in 1896 in collaboration with the American Railway 
Master Mechanics Association; full size locomotives were used, and the study had a considerable 
influence on locomotive design in the United States. 
 
Perhaps the most comprehensive collection of data is contained in a report entitled "A  Study of 
the Locomotive Front End" describing work carried out in the 1930s at the University of Illinois 
[3]. This presents experimental data for  a range of designs of blastpipe and chimney using a 1/4 
scale laboratory model, and it includes a useful review of earlier work. A particularly interesting 
conclusion (also confirmed by Goss) was that the pulsation in the flow through the blastpipe had 
a relatively insignificant effect on front end performance. It is perhaps too much to expect this 
conclusion to be universally valid, but it offers a welcome simplification for initial experiments, 
and indeed for theoretical models. 
 
 

Experiment or Theory ? 
 
Undoubtedly much of the early development of the front end was a matter of trial and error, but 
the above references indicate the importance that was attached to systematic experiment even in 
the early period of locomotive design. Unfortunately there was no satisfactory background of 
theory to guide the analysis and generalisation of the results, so that data for a particular design 
could not be related to those for other designs. Some of the above studies were accompanied by 
theoretical models which were based on a thermodynamic analysis of the process. In fact, the 
thermodynamic efficiency of the front end is so low that this approach does not provide a useful 
framework for a theoretical analysis.  
 
A more fruitful approach is to base the analysis on fluid mechanics (i.e. to use a momentum 
balance rather than an energy balance), and with the advent of the digital computer it is now 
possible to link a fluid mechanics analysis of the front end with the boiler to which it is attached. 
Even so, the complexity of the problem is such that a purely theoretical approach needs to be 
carefully tested against experiment. Why bother with theory then, if experiment is still required? 
There is in fact a very good reason: a theoretical analysis indicates the way in which the 
quantities such as draught, chimney and blastpipe dimensions, steam flow etc. are related to one 
another, so that experimental data can be fitted to equations having the correct form. This means 
that one can cover a much wider range of the design parameters with a given set of data. The 
following analysis will show for example that the pressure in the blastpipe and the smokebox 



draught are quite simply related, and that the ratio of steam to gas flow in the front end should be 
related to the ratio of blastpipe nozzle diameter to chimney diameter. 
 
The analysis is purely theoretical, although some of the elements (such as the 'turbulent free jet' ) 
have been thoroughly tested elsewhere, and the theory confirmed. The only other theoretical 
concept used is the so-called 'Momentum Theorem', which follows from the application of 
Newton's Laws of Motion to a fluid flow system. This states that the change in momentum of a 
fluid flowing through a system (such as a blastpipe, smokebox, chimney combination) must be 
balanced against the force acting on the fluid: we shall use this to estimate the draught produced 
by the interaction of the steam and gas jet with the chimney. 
 
 

An 'Entrainment' model  
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The mechanism by which the flow through the blastpipe 
induces a flow of air through the boiler is best understood 
in terms of the 'free turbulent jet'.  Many measurements 
have been made on jets of fluid emerging into a large 
volume of fluid, and in most situations  of interest in 
engineering the flow in such jets is turbulent. The fluid 
surrounding the jet is entrained by turbulent mixing, and 
it transpires that a rather simple model of turbulence 
adequately describes the flow in the entrainment region - 
a region that is at uniform pressure. A description of the 
theoretical model and its supporting experimental data is 
given  in the Appendix. (See also Schlichting[4], 
Townsend[5], Daily & Harlman[6].) For our purpose the 
following abstraction will suffice. 
 
    Fig.1 illustrates the flow into the jet, and the 
distribution of  velocity across it. The flow pattern is such 
that  the velocity umax at the axis decreases linearly in the 
flow direction. The distribution of 'reduced' velocity 
u/umax  across the jet remains the same shape at all 

sections along the jet; consequently the jet is conical in form, and the angle of divergence can be 
determined if the velocity distribution is 'chopped off' at some radius where the velocity is 
negligible (the theoretical distribution extends out to infinity!). Since the pressure field is 
uniform, the momentum of the jet in its flow direction remains constant and equal to the 
momentum of the fluid issuing from the nozzle. This being the case one can specify the 
entrainment process entirely in terms of the diameter of the nozzle and the velocity of the fluid 
issuing from it.  

 

 
(Flow very close to the nozzle does not conform to the above pattern because the velocity 
distribution at the nozzle is uniform and has a finite width; however, this fact may be allowed for 
by defining a fictitious origin for the jet at a point a distance 0.6d downstream of the nozzle, 
where d is the nozzle diameter. After a further distance of about 6.0d, the jet will be fully 
developed).  
 
The volume of fluid forming the jet increases in proportion to the distance  x  from the jet origin, 
fluid being drawn in by the turbulent mixing process. This is consistent with the linear decrease 
in velocity because the cross sectional area of the jet increases as x2; thus the product (which is 
equal to the volume flow) increases like x2/x, or x. The rate of increase of the volume flowrate, V, 
in terms of the volume flowrate through the nozzle, V0  , is given by the equation: 
                              V/V0 = 0.44 (x /d) . . . . (1) 
 



( This is not valid close to the nozzle outlet, but is applicable for values of  x  greater than      
about 5d ) 
 

Application to the Front End 
 
The first point to make is that in a locomotive the jet is steam whilst the entrained fluid is 
composed of flue gases, and moreover the two are at different temperatures. The steam condition 
in the jet will depend upon the steam chest conditions and the efficiency of the engine. However, 
the thermodynamic efficiency of a non-condensing steam engine is so low that variations in its 
value will not have a great effect. Typically, the steam will be slightly superheated or slightly wet 
(i.e. at around 100°C) whilst the flue gases may be at a few hundred degrees. This temperature 
difference will tend to compensate for the difference in molecular weight of the two streams, and 
as a crude approximation they will be assumed to be of the same density.  
                                          
The second point is that there is a more or less fixed relationship between the flowrates of the 
two streams which is determined by the combustion process. This will of course depend upon the 
fuel, the effectiveness of the combustion, and in particular the amount of excess air drawn into 
the firebox. A typical ratio of the mass flow of flue gas to the mass flow of steam (corresponding 
to 30% excess air)  is   around 1.8.  
 
The jet velocity distribution shown in Fig.1 is in theory infinitely wide, but we are concerned 
with the central region which accounts for most of the momentum in the flow. In the Appendix it 
is shown that if the velocity distribution is truncated at a value of u/umax = 0.10, the remaining 
core contains over 99% of the jet momentum. The corresponding included angle of the jet is 
about 21°, and Equation 1 should be modified as shown below (taking account also of the 
assumption of equal density of the steam and gas flows) 
 
   Vx /V0  =  mx /m0  =  0.30 (x/d) . . . . (1a) 
 
where Vx is the volume flow at a distance x from the jet 'origin', mx is the corresponding mass 
flow, and V0 and m0  refer to  the blastpipe flow. 
 
It is generally accepted that the blastpipe nozzle should be positioned so that the expanding jet 
impinges on the wall of the chimney in the region of the 'choke', or minimum diameter. Using the 
angle of divergence found above, this implies that  the nozzle should be positioned a distance of 

about 2.7 D below the choke, where D is the diameter at the 
choke. For the purpose of developing a theory we assume 
that this criterion is met; we shall later speculate on the 
possible behaviour of the system when the jet is either too 
big or too small to fit the choke.  
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The next step is to estimate the pressure rise that occurs in 
moving from the smokebox to the outlet of the chimney (i.e. 
to atmospheric pressure). For simplicity we shall first 
consider the case of a parallel chimney, and we shall assume 
that the frictional forces between the gas and steam mixture 
and the chimney wall are negligible. As shown in the 
Appendix, this system can be solved by a straightforward 
application of the Momentum Theorem, which balances the 
momentum flows into and out of the chimney against the 
pressure forces acting on the fluid. The shape of the velocity 
profile entering the chimney is that shown in Fig.1, and if 
the chimney is long enough, the profile at outlet will be flat. 
Fig.2 illustrates the process. 
 
The volume flow of fluid is of course the same at inlet and 

outlet. If one calculates the momentum at the two sections, however, one finds that it decreases in 
 



moving from inlet to outlet. According to the Momentum Theorem, this implies that the pressure 
at the chimney outlet (i.e. atmospheric) must be greater than that at the inlet. This difference is of 
course the ‘draught’ produced by the front end. In practice there will be an additional force 
opposing the flow by virtue of the drag at the chimney wall. This can be ameliorated by making 
the chimney divergent so that the reduction in momentum, and thus the increase in pressure,  in 
the flow direction are both greater. 
 

The  'Ideal'  Front  End
 
As shown in the Appendix, if we take account of the above ratio of x/D for the  arrangement in 
which the jet fits the chimney, the magnitude of the pressure difference (or 'smokebox draught')  
∆p is given by the expression:                                                                                   
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             where ρ   =  density of the fluid    (kg / cubic metre)  OR (lb / cubic ft) 
                        uj  =  flow velocity through blastpipe nozzle  (metre / sec)  OR (ft / sec) 
                        d   =  blastpipe nozzle diameter  (metre)  OR  (ft.) 
                       D  =  chimney choke diameter  (metre)  OR  (ft.) 
                        ∆p =  pressure difference across chimney ( Pascal )  OR  (poundal / square ft.) 
 
Let us pause here and consider the restrictions that are to be placed on the Equation (2). There is 
the explicit requirement that the jet from the blastpipe should 'fit' the chimney; this has been 
taken into account by fixing the ratio  x / D  = 2.7, and this is built into Equation (2). However, in 
using the turbulent 'free jet' data we have also implicitly assumed that the jet is able to entrain the 
amount of fluid that it would do if it discharged into a large volume of fluid. Given the vacuum 
generated by the front end, one may calculate the gas flow through the boiler, and if this is equal 
to the entrainment, Equation (2) should be valid. If not, it is likely that the entire flow pattern will 
change, in which case Equation (2) may not be valid. In view of the relationship between steam 
production ms and flue gas production mg (already mentioned above) we can quantify this 
additional requirement . 
  
Since  from Equation (1a),  (mg + ms)/ ms =  0.3 x/d,    and  x/D  =  2.7  ,  the condition for 
balance between the flue gas entrained and the actual gas supply is: 
 
                                              d / D   =  0.81 ms / ( ms + mg)   . . . (3) 
                     
Equation (2) is then changed to: 
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For a typical value of mg/ms = 1.8,  the ratio d/D  is 0.29, and the right hand term in Equation (4) 
equals  0.057. (Other values of mg /ms could be used to represent different boiler operating 
conditions - particularly in respect of the excess air used). Finally it is worth noting that the 
expression 0.5ρ uj

2 very closely equal  to the pressure difference across the blastpipe nozzle, so 
the above ratio is simply the ratio of the smokebox draught to the backpressure in the blastpipe. 
If the ratio mg/ms remains constant then so does the draught/backpressure ratio. 
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Notice that equations (2) and (4) are in dimensionless form: i.e. the units on each side of the 
equation cancel out since, for example pressure has the same units as ρ uj

2 and d the same units 
as D . The equation can be used with any consistent set of units  such as those shown above. ( It 
may help to state that a pressure of 1 Pascal is equivalent to 0.102 mm water gauge, and 1 
poundal / sq. ft.  to  0.006 in. water gauge.) Since Equation (4) is such an important equation an 
example of its use is given below, using the two sets of units. 
 

Mass flow of steam    =    13.61 kg/hr.    30 lb/hr 
                ( 0.00378 kg/sec.)  (0.00833 lb/sec) 
    Mass flow of gas        =    24.5  kg/hr.                         54 lb/hr. 
 
 Nozzle diameter         =    7.37 mm (0.00737 m)  0.290 in. (0.0242 ft)
 Chimney diameter      =    25.4 mm (0.0254 m)  1.0 in. (0.0833 ft.) 
 Steam density          =    0.6 kg/cu. m               0.0374 lb/cu.ft  
 Nozzle flow area        =    0.0000427 sq.m              0.00046 sq.ft 
 
            [And since velocity     =     mass flow  ÷  ( density  × X-sectional area) ] 
            Steam velocity           =    148 m/s               484 ft./s 
Thus     0.5ρ uj

2                      =     6571 Pascal               4380 poundals/sq.ft 
                   (670 mm water gauge) (26.38 in. water gauge)  
 
 Pressure difference  (draught) =     0.685×670×(7.37/25.4)2 0.685× 26.38×(0.29/1.0)2

                        =     38.6  mm water                       1.52 in water 
 
We shall refer to front end designs that conform to Equation (4) - i.e. designs in which the jet fits 
the chimney and in which the stated value of mg / ms is maintained - as 'ideal' designs. They are 
ideal only in the sense that they conform to the theory in its present form. Experiment may show 
that the theory needs modification. 
 
Equation (4) is illustrated in Fig.(3) which shows four different blastpipe and chimney designs, 
all with a steam mass flow of 30 lb/hr. and all maintaining the same ratio of steam to gas mass 
flow rates. If the details of the boiler were known one could estimate the draught required to 
produce the specified steaming rate and compare this with the draught that the front end is 
capable of producing.  

Fig.3

B C DA

Arrangement A B  C D 
Nozzle diameter (in) 0.290 0.319 0.348 0.377 
Chimney diameter (in) 1.000 1.100 1.200 1.300 
Dimension “x”   (in) 2.700 2.970 3.240 3.510 
Draught  (in.  water) 1.520 1.040 0.730 0.530 
Backpressure  (psi) 0.950 0.650 0.460 0.330 

 
 
               ALL CASES:  Steam flow 30 lb/hr      Flue gas flow  54 lb/hr  
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The  'Non-Ideal'  Front End
 
It is obvious that even if the 'ideal' arrangement can be met for one operating condition, it is 
unlikely to hold for different rates of steam usage and different firing conditions. This is of 
course true for any theory or design rule; at least our theory has the advantage of being of the 
correct form! For a start let us consider how the 'ideal' front end behaves as the steam flow 
changes. Other things remaining the same, the draught produced will increase in proportion to 
the square of the steam mass flow, and the mass flow of entrained gas will increase in proportion 
to the steam mass flow. If the front end is to properly serve the boiler to which it is attached, the 
flow resistance of the boiler must also increase in proportion to the square of the gas mass flow. 
This may well happen in large boilers in which the flow in the boiler tubes is turbulent, but not in 
small boilers operating at laminar flow conditions where the flow resistance increases in 
proportion to the flow rate (or, at any rate less rapidly than the flow rate squared). In the latter 
case, the tendency would be for the draught to be more than adequate as the steaming rate 
increases, and less than adequate as it decreases. Of course, it may well be the case that in a 
particular locomotive the front end is designed to produce a more than adequate draught over the 
greater part of the steaming range, in which case one can always open the firehole door!  
 
If the mismatch between draught and boiler pressure drop is such that less flue gas is available at 
the smokebox than the jet can entrain there must be a change in the behaviour of the flow. The 
most likely change is for there to be a reverse flow close to the chimney wall, the air flowing in 
being subsequently entrained in the jet and discharged through the chimney. It may be possible to 
model this using one of the 'Computational Fluid Mechanics' programmes that are now available. 
Further work, both experimental and theoretical is required. 
 
 

Conclusions
 
A theory has been advanced for an ideal arrangement of the front end. In this arrangement  the 
blastpipe is so placed that the jet of steam and flue gas impinges on the chimney wall at the 
'choke', or narrowest section. It is also assumed that the supply of flue gas matches the 
entrainment of gas into the jet; this is achieved when the pressure drop through boiler and fire is 
equal to the draught produced by the front end. In these circumstances the draught produced can 
be shown to be proportional to the pressure difference across the blastpipe nozzle. 
 
Further work, both experimental and theoretical, is required on the effect of taper chimneys and 
on the effect of 'non-ideal' arrangements when the jet from the blastpipe does not fit the chimney, 
or when the flow of gas into the jet is restricted. Even if ideal conditions exist at one rate of 
steaming it is unlikely that they will prevail over the whole range. It should be stressed that 
reliable experimentation must always take precedence over theory; however, experimental results 
can be generalised and better understood if they can be placed in a theoretical framework.  
 
It is not easy to isolate front end performance from the behaviour of the rest of the locomotive - 
particularly the boiler. A computer programme that links the front end with the fluid flow and 
heat transfer characteristics of the boiler has been written [7], and can be made available to 
anyone who is interested. This enables a particular design to be 'operated ' at various firing rates, 
and the match between boiler pressure drop and front end draught can then be examined. 
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Appendix
 
The turbulent free jet can be defined in terms of the following relationships: 
 
 1. The distribution of velocity across the jet - i.e.  u / umax = f( r / x )      (See Fig.1) 
             2. The centreline velocity umax  as a function of uj , d, and x                    (See Fig.1) 
             3. The momentum of the jet as a function of x  (This must remain constant because  
                            there is no external force acting on the jet.) 
 

Velocity distribution across jet 
 
A simple mixing length turbulence model used to describe the motion of the jet yields a constant 
turbulent or 'eddy' viscosity throughout. (The scale of the turbulence remains proportional to the 
width of the jet, and the turbulent velocity fluctuations inversely proportional to the width: thus 
eddy viscosity, the product of the two, remains constant). This means that the mathematical 
solutions developed for non-turbulent viscous flow in jets are applicable to turbulent jets. When 
fitted to experimental data for turbulent jets this yields the distribution: 
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Momentum of jet
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Centreline velocity of jet
 
                             Assume  umax  =  k uj d/x      
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(i.e  a centreline velocity that varies like 1/x, -  consistent with experiment) 
 
              Momentum                M x k u d xj= 0 00533 2 2 2 2 2. /πρ
 and since there is no change in momentum in the x-direction this must be equal to the 
momentum issueing from the blast nozzle, which is:    
 
   M = (π/4) d2 ρ uj

2                                  
                                                     
                 Therefore      k  =  1/√(0.00533 × 4)   =  6.86            
 
    Using this to eliminate umax from eqn. (A2), and noting that the volume flow through the 
nozzle  is equal to  Vo  = (π/4)d2uj ,  the ratio of the volume flow V at x, to the volume flow from 
the nozzle is:     
 

   
V
V

x
d0

0 44= .  . . . . . . (A4) 

 
(Note that Eqn.(A4) defines the volume flow in the theoretically infinitely wide jet) 
 

Practical jet width 
 
Clearly the bulk of the jet momentum is contained in the central region of the jet, and we 
therefore define a width which contains virtually all the momentum. For example, if we integrate 
out to u /umax = 0.1,  we find that the included angle of the jet is 21°, and the volume flow is 
given by: 

                                      
V
V

x
d0

0 30= .   . . . . . . (A5) 

 
By repeating the momentum integral out to u /umax = 0.1 we can then show that the momentum of 
the practical width of jet is over 99% of the infinitely wide jet. From now on we shall define the 
jet in terms of Eqn.(A5) and the momentum at the nozzle : 
 
   M = (π/4) d2 ρ uj

2 .  . . . . (A6) 
               
 
Fit jet to chimney 
 
Using the above definition of jet boundary we find that if the jet is to impinge on the chimney 
wall at the choke (diameter D) it must be positioned so that: 
 

   
x
D
= 2 70.  . . . . . . (A7) 

 

 

Pressure rise in parallel chimney 
 
The idea here is to calculate the jet momentum at the chimney outlet on the assumption that the 
velocity is uniform at this point, and to subtract this from the known jet momentum at the choke. 
If we neglect drag at the chimney wall the Momentum Theorem can be applied to calculate the 
pressure force on the fluid in the chimney (i.e. the draught " cross-sectional area of chimney) 
Outlet velocity from chimney is given by: 
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which together with Eqn. (A7) gives: 
 

      u
d
D

uj= 0 811.  

 
The outlet momentum is therefore: 
 

      M D u d u j0
2 2 2 2 2

4 4 0 811= =π ρ π ρ ( . )  

 
Applying the Momentum Theorem we find that the pressure rise in the chimney (i.e the 'draught') 
∆p is: 
 

      ∆ p
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Sometimes it is more convenient to express the draught in terms of the mass flow rate through 
the blastpipe nozzle: 
 

      ∆ p
m
d D

j= 0 55
2

2 2.
ρ

 . . . . (A9) 

 
 
Note that the above expressions assume implicitly that there is sufficient gas flow through the 
boiler to match the amount entrained by the jet. (See the section entitled 'The Non-ideal  Front 
End')  
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